

Turbo Pascal 5.5

Object-Oriented Programming GuideObject-Oriented Programming GuideObject-Oriented Programming GuideObject-Oriented Programming Guide

Copyright © 1989 All rights reserved.
Borland International, Inc.
1800 Green Hills Road
P.O. Box 660001
Scotts Valley, CA 95066-0001

Disclaimer:
This volume is not the complete text of the original book, and has
been scanned from the original, converted through OCR, and
errors have been corrected by hand. Any remaining errors are
mine, overlooked in this process, despite efforts to find and
correct them.

I undertook this project because of repeatedly expressed wishes
by many on the Borland newsgroups to see this material made
available again. Borland kindly granted permission to republish,
and this is the result. I hope that it may be of benefit to still more
developers than it was in its original incarnation.
- William Meyer

Introduction
Turbo Pascal 5.5 gives you the power and efficiency of object-oriented program-
ming at turbo speed. In addition to the Turbo Pascal features you have come to rely
on, this new version offers you the programming techniques of the future:

• both static objects for maximum efficiency and dynamic objects for maximum
run-time flexibility

• both static and virtual methods constructors and destructors that create and
deallocate objects (which saves programming time and improves readability of
your code)

• object constants—static object data is initialized automatically

• greater speed—Turbo Pascal 5.5 compiles even faster

• an improved overlay manager (which lets overlays run faster, with less disk I/O)

• enhanced help screens that let you cut and paste examples into your code

• an online tutorial to introduce you to Turbo Pascal's integrated development
environment

The object-oriented extensions in Turbo Pascal 5.5 were inspired by Larry Tesler’s
“Object Pascal Report” (Apple, 1985) and Bjarne Stroustrup’s “The C++ Program-
ming Language” (1986, Addison-Wesley).
Introduction 1

Introduction

2

About this manual

This manual contains information on the new object-oriented features of Turbo
Pascal 5.5. For all other information about Turbo Pascal, refer to the Turbo Pascal
User's Guide or the Turbo Pascal Reference Guide.

Here’s a breakdown of the chapters and appendixes in this volume:

• Chapter 1: All about OOP introduces you to the main concepts of object-ori-
ented programming how objects differ from records, the advantages of encapsu-
lated data and code, inheritance, polymorphism, static versus dynamic object
instances and uses practical examples to demonstrate the principles of object-
oriented programming.

• Chapter 2: Object-oriented debugging covers modifications to Turbo Debug-
ger to support Turbo Pascal 5.5, including Object Inspectors and the Object
Hierarchy window.

• Chapter 3: Turbo Pascal 5.5 language definition contains the formal defini-
tion of all object-oriented extensions to Turbo Pascal.

• Chapter 4: Overlays discusses improvements to the Turbo Pascal overlay man-
ager.

• Chapter 5: Inside Turbo Pascal explains the implementation of the object-ori-
ented features of Turbo Pascal 5.5.

• Appendix A: New and modified error messages lists new compiler error mes-
sages and warnings specific to object-oriented Turbo Pascal.

Installation

The first thing you’ll want to do is install Turbo Pascal on your system. Your Turbo
Pascal package includes all the files and programs necessary to run both the inte-
grated environment and command-line versions of the compiler. The INSTALL
program sets up Turbo Pascal on your system, and it works on both hard-disk and
floppy-based systems.

INSTALL walks you through the installation process. All you have to do is follow
the instructions that appear onscreen at each step. Please read them carefully. If
you’re installing onto floppies, rather than onto a hard disk, be sure to have at least
four blank, formatted 360K disks on hand.
Introduction

Special Notes
To run INSTALL:

1. Insert the distribution disk labeled Installation Disk in Drive A.

2. Type A: and press Enter.

3. Type INSTALL and press Enter.

From this point on, just follow the instructions that INSTALL displays onscreen.

As soon as INSTALL is finished running, you are ready to start using Turbo Pascal.

After you’ve tried out the Turbo Pascal integrated development environment, you
may want to customize some of the options. To do that, use the program TINST,
which is discussed in Appendix D of the User’s Guide.

Special Notes

• If you use INSTALL’s Upgrade option, version 5.5 files will overwrite any ver-
sion 5.0 files that have the same names.

• If you install the graphics files into a separate subdirectory (C:\TP\BGI, for
example), remember to specify the full path to the driver and font files when
you call InitGraph. For example,
InitGraph(Driver, Mode, 'C:\TP\BGI');

• If GRAPH.TPU is not in the current directory, you'll need to add its location to
the unit directories with the Options/Directories/Unit Directories command (or
with the /U option in the command-line compiler) in order to compile a BGI
program.

• If you have difficulty reading the text displayed by the INSTALL or TINST pro-
grams, they will both accept an optional command-line parameter that forces
them to use black-and-white colors:
A:INSTALL /B Forces INSTALL into BW80
A:TINST /B Forces TINST into BW80 mode

You may need to specify the /B parameter if you are using an LCD screen or a
system that has a color graphics adapter and a monochrome or composite moni-
tor. To find out how to permanently force the integrated environment to use
black- and-white colors with your LCD screen (or CGA and mono- chrome/
composite monitor combination), see the note on page 26 of the User’s Guide.
Introduction 3

Introduction

4

Online help

You can get online help about both the integrated environment and language-spe-
cific items. To bring up help when you’re on a menu item or within a window, press
F1; to bring up the main index to the help system, press F1 again.

Language-specific help is available only when you're in the Edit window by press-
ing Ctrl-F1. You can get help about the syntax of Pascal reserved words or the usage
and parameters of a particular procedure or function, cut and paste examples into
your file, or find out about compiler switches, and more.

For language help, position your cursor on the item in the Edit window you want to
know more about and then press Ctrl-F1.

To cut and paste from help, follow these easy steps:

1. Once you’ve brought up the help screen you want to copy from, press C. This
activates the cursor so you can position it anywhere on the help screen.

2. After you’ve placed the cursor at the beginning of the text you want to copy,
press B to begin. Then use the ↑ , ↓ , ←, and → arrow keys to move to the end
of your block (highlighting the text you’re copying at the same time). Pressing
B again resets the beginning of the block to the cursor position.

3. To end cut-and-paste and to place the text in your edit file, press Enter.

4. The text is pasted into the editor and is marked as a block, which allows you to
easily move the pasted block.

How to contact Borland

If, after reading this manual and using Turbo Pascal, you’d like to contact Borland
with comments for technical support, we suggest the following procedures:

The best way is to log on to Borland’s forum on CompuServe: Type GO BPROGA
at the main CompuServe menu and follow the menus to section 2. Leave your ques-
tions or comments here for the support staff to process.

If you prefer, write a letter and send it to
Introduction

How to contact Borland
Technical Support Department
Borland International
P.O. Box 660001

1800 Green Hills Road
Scotts Valley, CA 95066-0001

Note!

If you include a program example in your letter, it must be limited to 100 lines or
less. We request that you submit it on disk, include all the necessary support files on
that disk, and provide step-by-step instructions on how to reproduce the problem.
Before you decide to get technical support, try to duplicate the problem with the
code contained on the floppy disk, just to be sure we can duplicate the problem
using the disk you provide us.

• You can also telephone our Technical Support department at (408) 438-5300. To
help us handle your problem as quickly as possible, have these items handy
before you call:

•product name and version number

•product serial number

•computer make and model number

•operating system and version number
Introduction 5

Introduction

6
 Introduction

CHAPTER 1 All about
OOP
Object-oriented programming is a method of pro-
gramming that closely mimics the way all of us get
things done. It is a natural evolution from earlier
innovations to programming language design: It is
more structured than previous attempts at structured
programming; and it is more modular and abstract
than previous attempts at data abstraction and detail
hiding. Three main properties characterize an
object-oriented programming language:

• Encapsulation: Combining a record with the
procedures and functions that manipulate it to
form a new data type: an object.

• Inheritance: Defining an object and then using
it to build a hierarchy of descendant objects,
with each descendant inheriting access to all its
ancestors' code and data.

• Polymorphism: Giving an action one name that
is shared up and down an object hierarchy, with
each object in the hierarchy implementing the
action in a way appropriate to itself.
Chapter 1 All about OOP 1

All about OOP
Turbo Pascal 5.5’s language extensions give you the full power of object-ori-
ented programming: more structure and modularity, more abstraction, and
reusability built right into the language. All these features add up to code that
is more structured extensible, and easy to maintain.

The challenge of object-oriented programming (OOP) is that it sometimes
requires you to set aside habits and ways of thinking about programming that
have been considered standard for many years. Once that is done, however,
OOP is simple, straight-forward, and superior for solving many of the prob-
lems that plague traditional software programs.

A note to you who have done object-oriented programming in other lan-
guages: Put aside your previous impressions of OOP and learn Turbo Pascal
5.5’s object-oriented features on their own terms. OOP is not one single way;
it is a continuum of ideas. In its object philosophy, Turbo Pascal 5.5 is more
like C++ than Smalltalk. Smalltalk is an interpreter, while from the begin-
ning, Turbo Pascal has been a pure native code compiler. Native code com-
pilers do things differently (and far more quickly) than interpreters. Turbo
Pascal was designed to be a production development tool, not a research
tool.

And a note to you who haven’t any notion at all what OOP is about: That’s
just as well. Too much hype, too much confusion, and too many people talk-
ing about something they don't understand have greatly muddied the waters
in the last year or so. Strive to forget what people have told you about OOP.
The best way (in fact, the only way) to learn anything useful about OOP is to
do what you’re about to do: Sit down and try it yourself.

Objects?
Yes, objects. Look around you...there’s one: the apple you brought in for
lunch. Suppose you were going to describe an apple in software terms. The
first thing you might be tempted to do is pull it apart: Let S represent the area
of the skin; let J represent the fluid volume of juice it contains; let F repre-
sent the weight of fruit inside; let D represent the number of seeds....

Don’t think that way. Think like a painter. You see an apple, and you paint an
apple. The picture of an apple is not an apple; it’s just a symbol on a flat sur-
face. But it hasn't been abstracted into seven numbers, all standing alone and
independent in a data segment somewhere. Its components remain together,
in their essential relationships to one another.
2 Chapter 1 All about OOP

Inheritance
Objects model the characteristics and behavior of the elements of the world
we live in. They are the ultimate data abstraction (so far).

Objects keep all their char-
acteristics and behavior

together.

An apple can be pulled apart, but once it’s been pulled apart it’s not an apple
anymore. The relationships of the parts to the whole and to one another are
plainer when everything is kept together in one wrapper. This is called
encapsulation, and it’s very important. We'll return to encapsulation in a little
while.

Of equal importance is the fact that objects can inherit characteristics and
behavior from what we call ancestor objects. This is an intuitive leap; inher-
itance is perhaps the single biggest difference between object-oriented Pas-
cal and Turbo Pascal programming today.

Inheritance
The goal of science is to describe the workings of the universe. Much of the
work of science, in furthering that goal, is simply the creation of family
trees. When entomologists return from the Amazon with a previously
unknown insect in a jar, their fundamental concern is working out where that
insect fits into the giant chart upon which the scientific names of all other
insects are gathered. There are similar charts of plants, fish, mammals, rep-
tiles, chemical elements, subatomic particles, and external galaxies. They all
look like family trees: a single overall category at the top, with an increasing
number of categories beneath that single category, fanning out to the limits
of diversity.

Within the category insect, for example, there are two divisions: insects with
visible wings, and insects with hidden wings or no wings at all. Under
winged insects is a larger number of categories: moths, butterflies, flies, and
so on. Each category has numerous subcategories, and beneath those subcat-
egories are even more subcategories (see Figure 1.1).
Chapter 1 All about OOP 3

All about OOP
Figure 1.1
A partial taxonomy chart of

insects

This classification process is called taxonomy. It’s a good starting metaphor
for the inheritance mechanism of object-oriented programming.

The questions that a scientist asks in trying to classify some new animal or
object are these: How is it similar to the others of its general class? How is it
different? Each different class has a set of behaviors and characteristics that
define it. A scientist begins at the top of a specimen’s family tree and starts
descending the branches, asking those questions along the way. The highest
levels are the most general, and the questions the simplest: Wings or no
wings? Each level is more specific than the one before it, and less general.
Eventually the scientist gets to the point of counting hairs on the third seg-
ment of the insect’s hind legs - specific indeed. (And a good reason, perhaps,
not to be an entomologist.)

The important point to remember is that once a characteristic is defined, all
the categories beneath that definition include that characteristic. So once you
identify an insect as a member of the order diptera (flies), you needn’t make
the point again that a fly has one pair of wings. The species of insect we call
flies inherits that characteristic from its order.

As you’ll learn shortly, object-oriented programming is very much the pro-
cess of building family trees for data structures. One of the important things
object-oriented programming adds to traditional languages like Pascal is a
4 Chapter 1 All about OOP

Objects: records that inherit
mechanism for data types to inherit characteristics from simpler, more gen-
eral types. This mechanism is inheritance.

Objects: records that inherit

In Pascal terms, an object is very much like a record, which is a wrapper for
joining several related elements of data together under one name. In a graph-
ics environment, we might gather together the X and Y coordinates of a posi-
tion on the graphics screen and call it a record type named Location:

Location = record
X, Y : Integer;

end;

Location here is a record type; that is, it’s a template that the compiler uses
to create record variables. A variable of type Location is an instance of type
Location. The term instance is used now and then in Pascal circles, but it is
used all the time by OOP people, and you'll do well to start thinking in terms
of types and instances of those types.

With type Location you have it both ways: When you need to think of the X
and Y coordinates separately, you can think of them separately as fields X
and Y of the record. On the other hand, when you need to think of the X and
Y coordinates working together to pin down a place on the screen, you can
think of them collectively as Location.

Suppose you wanted to display a point of light at a position described on the
screen by a Location record. In Pascal you might add a Boolean field indicat-
ing whether there is an illuminated pixel at a given location, and make it a
new record type:

Point = record
X, Y : Integer;
Visible : Boolean;

end;

You might also be a little more clever and retain record type Location by cre-
ating a field of type Location within type Point:

Point = record
Position : Location;
Visible : Boolean;

end;
Chapter 1 All about OOP 5

All about OOP
This works, and Pascal programmers do it all the time. One thing this
method doesn't do is force you to think about the nature of what you’re
manipulating in your software. You need to ask questions like, “How does a
point on the screen differ from a location on the screen?” The answer is this:
A point is a location that lights up. Think back on the first part of that state-
ment: A point is a location....

There you have it!

Implicit in the definition of a point is a location for that point. (Pixels exist
only on the screen, after all.) In object-oriented programming, we recognize
that special relationship. Because all points must contain a location, we say
that type Point is a descendant type of type Location. Point inherits every-
thing that Location has, and adds whatever is new about Point to make Point
what it must be.

This process by which one type inherits the characteristics of another type is
called inheritance. The inheritor is called a descendant type; the type that the
descendant type inherits from is an ancestor type.

The familiar Pascal record types cannot inherit. Turbo Pascal 5.5, however,
extends the Pascal language to support inheritance. One of these extensions
is a new category of data structure, related to records but far more powerful.
Data types in this new category are defined with a new reserved word:
object. An object type can be defined as a complete, stand-alone type in the
fashion of Pascal records, or it can be defined as a descendant of an existing
object type, by placing the name of the ancestor type in parentheses after the
reserved word object.

In the graphics example you just looked at, the two related object types
would be defined this way:

Note the use of parenthe-
ses here to denote inherit-

ance.

type
Location = object

X, Y : Integer;
end;

Point = object(Location)
Visible : Boolean;

end;

Here, Location is the ancestor type, and Point is the descendant type. As
you'll see a little later, the process can continue indefinitely: You can define
descendants of type Point, and descendants of Point’s descendant type, and
so on. A large part of designing an object-oriented application lies in build-
6 Chapter 1 All about OOP

Objects: records that inherit
ing this object hierarchy expressing the family tree of the objects in the
application.

All the eventual types inheriting from Location are called Location’s descen-
dant types, but Point is one of Location’s immediate descendants. Con-
versely, Location is Point’s immediate ancestor. An object type (just like a
DOS subdirectory) can have any number of immediate descendants, but only
one immediate ancestor.

Objects are closely related to records, as these definitions show. The new
reserved word object is the most obvious difference, but there are numerous
other differences, some of them quite subtle, as you'll see later.

For example, the X and Y fields of Location are not explicitly written into
type Point, but Point has them anyway, by virtue of inheritance. You can
speak about Point’s X value, just as you can speak about Location’s X value.

Instances of object
types

Instances of object types are declared just as any variables are declared in
Pascal, either as static variables or as pointer referents allocated on the heap:

type
PointPtr = ^Point;

var
StatPoint : Point; { Ready to go! }
DynaPoint : PointPtr; { Must allocate with New before use }

An object’s fields You access an object’s data fields just as you access the fields of an ordinary
record, either through the with statement or by dotting. For example,

MyPoint.Visible := False;
with MyPoint do
begin

X := 341;
Y := 42;

end;

Don’t forget: An object’s
inherited fields are not

treated specially simply
because they are inherited.

You will just have to remember at first (it will eventually come naturally)
that inherited fields are just as accessible as fields Y declared within a given
object type. For example, even though X and Y are not part of Point’s decla-
ration (they are inherited from type Location), you can specify them just as
though they were declared within Point:

MyPoint.X := 17;
Chapter 1 All about OOP 7

All about OOP
Good practice
and bad practice

Even though you can access an object’s fields directly, it’s not an especially
good idea to do so. Object-oriented programming principles require that an
object’s fields be left alone as much as possible. This restriction might seem
arbitrary and rigid at first, but it’s part of the big picture of OOP that we’re
building in this chapter. In time you'll see the sense behind this new defini-
tion of good programming practice, though there’s some ground to cover
before it all comes together. For now, take it on faith: Avoid accessing object
data fields directly.

So - how are object fields accessed? What sets them and reads them?

An object’s data fields are
what an object knows; its

methods are what an
object does.

The answer is that an object’s methods should be used to access an object’s
data fields whenever possible. A method is a procedure or function declared
within an object and tightly bonded to that object.

Methods
Methods are one of object-oriented programming’s most striking attributes,
and they take some getting used to. Start by harkening back to that fond old
necessity of structured programming, initializing data structures. Consider
the task of initializing a record with this definition:

Location = record
X, Y : Integer;

end;

Most programmers would use a with statement to assign initial values to the
X and Y fields:

var
MyLocation : Location;

with MyLocation do
begin

X := 17;
Y := 42;

end;

This works well, but it's tightly bound to one specific record instance,MyLo-
cation. If more than one Location record needs to be initialized, you'll need
more with statements that do essentially the same thing. The natural next
step is to build an initialization procedure that generalizes thewith statement
to encompass any instance of a Location type passed as a parameter:
8 Chapter 1 All about OOP

Methods
procedure InitLocation(var Target : Location;
NewX, NewY : Integer);

begin
with Target do
begin

X := NewX;
Y := NewY;

end;
end;

This does the job, all right - but if you’re getting the feeling that it’s a little
more fooling around than it ought to be, you're feeling the same thing that
object-oriented programming’s early proponents felt.

It’s a feeling that implies that, well, you’ve designed procedure InitLocation
specifically to serve type Location. Why, then, must you keep specifying
what record type and instance InitLocation acts upon? There should be some
way of welding together the record type and the code that serves it into one
seamless whole.

Now there is. It’s called a method. A method is a procedure or function
welded so tightly to a given type that the method is surrounded by an invisi-
ble with statement, making instances of that type accessible from within the
method. The type definition includes the header of the method. The full def-
inition of the method is qualified with the name of the type. Object type and
object method are the two faces of this new species of structure called an
object:

type
Location = object

X, Y : Integer;
procedure Init(NewX, NewY : Integer);

end;

procedure Location.Init(NewX, NewY : Integer);
begin

X := NewX; { The X field of a Location object }
Y := NewY; { The Y field of a Location object }

end;

Now, to initialize an instance of type Location, you simply call its method as
though the method were a field of a record, which in one very real sense it is:

var
MyLocation : Location;

MyLocation.Init(17, 42); { Easy, no? }
Chapter 1 All about OOP 9

All about OOP
Code and data
together

One of the most important tenets of object-oriented programming is that the
programmer should think of code and data together during program design.
Neither code nor data exists in a vacuum. Data directs the flow of code, and
code manipulates the shape and values of data.

When your data and code are separate entities, there’s always the danger of
calling the right procedure with the wrong data or the wrong procedure with
the right data. Matching the two is the programmer’s job, and while Pascal’s
strong typing does help, at best it can only say what doesn’t go together.

Pascal says nothing, anywhere, about what does go together. If it’s not in a
comment or in your head, you take your chances.

By bundling code and data declarations together, an object helps keep them
in sync. Typically, to get the value of one of an object’s fields, you call a
method belonging to that object that returns the value of the desired field. To
set the value of a field, you call a method that assigns a new value to that
field.

Turbo Pascal 5.5 does not enforce this, however. Like structured program-
ming, object-oriented programming is a discipline you must enforce upon
yourself, using tools provided by the language. Turbo Pascal allows you to
read and write an object’s fields directly from outside the object - but it
encourages you to follow good OOP practice and create methods to manipu-
late an object’s fields from within the object.

Defining methods The process of defining an object’s methods is reminiscent of Turbo Pascal
units. Inside an object, a method is defined by the header of the function or
procedure acting as a method:

type
Location = object

X, Y : Integer;
procedure Init(InitX, InitY : Integer);
function GetX : Integer;
function GetY : Integer;

end;

All data fields must be
declared before the first

method declaration.

As with procedure and function declarations in a unit’s interface section,
method declarations within an object tell what a method does, but not how.

The how is defined outside the object definition, in a separate procedure or
function declaration. When methods are fully defined outside the object, the
10 Chapter 1 All about OOP

Methods
method name must be preceded by the name of the object type that owns the
method, followed by a period:

procedure Location.Init(InitX, InitY: Integer);
begin

X:= InitX;
Y := InitY;

end;

function Location.GetX : Integer;
begin

GetX := X;
end;

function Location.GetY : Integer;
begin

GetY := Y;
end;

Method definition follows the intuitive dotting method of specifying a field
of a record. In addition to having a definition of Location.GetX, it would be
completely legal to define a procedure named GetX without the identifier
Location preceding it. However, the “outside” GetX would have no connec-
tion to the object type Location and would probably confuse the sense of the
program as well.

Method scope
and the Self

parameter

Notice that nowhere in the previous methods is there an explicit with
object do... construct. The data fields of an object are freely available
to that object's methods. Although separated in the source code, the method
bodies and the object’s data fields really share the same scope.

This is why one of Location’smethods can contain the statement Get Y: =
Y without any qualifier to Y. It’s because Y belongs to the object that called
the method. When an object calls a method, there is an implicit statement to
the effect with myself do method linking the object and its method in
scope.

This implicit with statement is accomplished by the passing of an invisible
parameter to the method each time any method is called. This parameter is
called Self, and is actually a full 32-bit pointer to the object instance making
the method call. The GetY method belonging to Location is roughly equiva-
lent to the following:
Chapter 1 All about OOP 11

All about OOP
This example is not fully
correct syntactically; it's

here simply to give you a
fuller appreciation for the

special link between an
object and its methods.

function Location.GetY(var Self : Location) : Integer;
begin

GetY := Self.Y;
end;

Is if important for you to be aware of Self? Ordinarily, no. Turbo Pascal’s
generated code handles it all automatically in virtually all cases. There are a
few circumstances, however, when you might have to intervene inside a
method and make explicit use of the Self parameter.

Explicit use of Self is legal.
but you should avoid situa-

tions that require it.

Self is actually an automatically declared identifier, and if you happen to find
yourself in the midst of an identifier conflict within a method, you can
resolve it by using the Self identifier as a qualifier to any data field belonging
to the method’s object:

type
MouseStat = record

Active : Boolean;
X, Y : Integer;
LButton, RButton : Boolean;
Visible : Boolean;

end;

procedure Location.GoToMouse(MousePos : MouseStat);
begin

Hide;
with MousePos do
begin

Self.X := X;
Self.Y := Y;

end;
Show;

end;

Methods implemented as
externals in assembly lan-
guage must take Self into

account when they access
method parameters on the
stack. For more details on
method call stack frames.

see page 102.

This example is necessarily simple, and the use of Self could be avoided sim-
ply by abandoning the use of the with statement inside Location.GoTo-
Mouse. You might find yourself in a situation inside a complex method
where the use of with statements simplifies the logic enough to make Self
worthwhile. The Self parameter is part of the physical stack frame for all
method calls.
12 Chapter 1 All about OOP

Methods
Object data fields
and method

formal parameters

One consequence of the fact that methods and their objects share the same
scope is that a method’s formal parameters cannot be identical to any of the
object’s data fields. This is not some new restriction imposed by object-ori-
ented programming, but rather the same old scoping rules that Pascal has
always had. It’s the same as not allowing the formal parameters of a proce-
dure to be identical to the procedure's local variables:

procedure CrunchIt(Crunchee: MyDataRec,
Crunchby, ErrorCode : Integer);

var
A, B : Char;
ErrorCode : Integer; { This declaration will cause an error! }

begin
...

A procedure’s loca1 variables and its formal parameters share the same
scope and thus cannot be identical. You'll get “Error 4: Duplicate identifier”
if you try to compile something like this; the same error occurs if you
attempt to give a method a formal parameter identical to any field in the
object that owns the method.

The circumstances are a little different, since having procedure headers
inside a data structure is a wrinkle new to Turbo Pascal 5.5, but the guiding
principles of Pascal scoping have not changed at all.

Objects exported
by units

It makes good sense to define objects in units, with the object type declara-
tion in the interface section of the unit and the procedure bodies of the object
type’s methods defined in the implementation section of the unit. No special
syntactic considerations are necessary to define objects within a unit.

Exported means “defined
within the interface section

of a unit.”

Units can have their own private object type definitions within the imple-
mentation section, and such types are subject to the same restrictions as any
types defined in a unit implementation section. An object type defined in the
interface section of a unit can have descendant object types defined in the
implementation section of the unit. In a case where unit B uses unit A, unit B
can also define descendant types of any object type exported by unit A.

The object types and methods described earlier can be defined within a unit
in this way:

unit Points;
interface
uses Graph;
type
Chapter 1 All about OOP 13

All about OOP
Location = object
X, Y : Integer;
procedure Init(InitX, InitY : Integer);
function GetX : Integer;
function GetY : Integer;

end;
Point = object(Location)

Visible : Boolean;
procedure Init(InitX, InitY : Integer);
procedure Show;
procedure Hide;
function IsVisible : Boolean;
procedure NoveTo(NewX, NewY ; Integer);

end;
implementation
{---}
{ Location's method implementations: }
{---}

procedure Location.Init(InitX, InitY: Integer);
begin

X:= InitX;
Y:= InitY;

end;

function Location.GetX : Integer;
begin

GetX := X;
end;

function Location.GetY : Integer;
begin

GetY := Y;
end;

{---}
{ Points's method implementations: }
{---}

procedure Point.Init(InitX, InitY: Integer);
begin

Location.Init(InitX, InitY);
Visible := False;

end;

procedure Point.Show;
begin

Visible := True;
PutPixel(X, Y, GetColor);

end;
14 Chapter 1 All about OOP

Methods
procedure Point.Hide;
begin

Visible := False;
PutPixel(X, Y, GetBkColor);

end;

function Point.IsVisible : Boolean;
begin

IsVisible := Visible;
end;

procedure Point.NoveTo(NewX, NewY : Integer);
begin

Hide;
X := NewX;
Y := NewY;
Show;

end;

end.

To make use of the object types and methods defined in unit Points, you sim-
ply use the unit in your own program, and declare an instance of type Point
in the var section of your program:

program MakePoints;
uses Graph, Points;
var

APoint : Point;
...

To create and show the point represented by APoint, you simply call
APoint’s methods using the dot syntax:

APoint.Init(151, 82); { Initial X,Y at 151,82 }
APoint. Show; { APoint turns itself on }
APoint.NoveTo(163, 101); { APoint moves to 163,101 }
APoint.Hide; { APoint turns itself off }

Objects can also be typed
constants; see page 80.

Objects, being very similar to records, can also be used inside with state-
ments. In that case, naming the object that owns the method isn’t necessary;

with APoint do
begin

Init(151, 82); { Initial X,Y at 151,82 }
Show; { APoint turns itself on }
MoveTo(163, 101); { APoint moves to 163,101 }
Hide; { APoint turns itself off }
Chapter 1 All about OOP 15

All about OOP
end;

Just as with records, objects can be passed to procedures as parameters and
(as you’ll see later on) be allocated on the heap.

Programming in
the active voice

Most of what’s been said about objects so far has been from a comfortable,
Turbo Pascal-ish perspective, since that’s most likely where you are coming
from. This is about to change, as we move into OOP concepts with fewer
precedents in standard Pascal programming. Object-oriented programming
has its own particular mindset, due in part to OOP’s origins in the (somewhat
insular) research community, but also simply because the concept is truly
and radically different.

Object-oriented languages
were once called “actor

languages” with this meta-
phor in mind.

One often amusing outgrowth of this is that OOP fanatics anthropomorphize
their objects. Data structures are no longer passive buckets for you to toss
values in. In the new view of things, an object is looked upon as an actor on
a stage, with a set of lines (methods) memorized. When you (the director)
give the word, the actor recites from the script.

It can be helpful to think of the statement APoint.MoveTo(242,118) as giving
an order to object APoint, saying “Move yourself to location 242,118.” The
object is the central concept here. Both the list of methods and the list of data
fields contained by the object serve the object. Neither code nor data is boss.

Objects aren’t being described as actors on a stage just to be cute. The
object-oriented programming paradigm tries very hard to model the compo-
nents of a problem as components, and not as logical abstractions. The odds
and ends that fill our lives, from toasters to telephones to terry towels, all
have characteristics (data) and behaviors (methods). A toaster’s characteris-
tics might include the voltage it requires, the number of slices it can toast at
once, the setting of the light/dark lever, its color, its brand, and so on. Its
behaviors include accepting slices of bread, toasting slices of bread, and
popping toasted slices back up again.

If we wanted to write a kitchen simulation program, what better way to do it
than to model the various appliances as objects, with their characteristics and
behaviors encoded into data fields and methods? It's been done, in fact; the
very first object-oriented language (Simula-67) was created as a language
for writing such simulations.

This is the reason that object-oriented programming is so firmly linked in
conventional wisdom to graphics-oriented environments. Objects should be
simulations, and what better way to simulate an object than to draw a picture
16 Chapter 1 All about OOP

Methods
of it? Objects in Turbo Pascal 5.5 should model components of the problem
you're trying to solve. Keep that in mind as you further explore Turbo Pas-
cal’s new object-oriented extensions.

Encapsulation The welding of code and data together into objects is called encapsulation. If
you’re thorough, you can provide enough methods so that a user of the
object never has to access its fields directly. Some other object-oriented lan-
guages like Smalltalk enforce encapsulation, but in Turbo Pascal 5.5 you
have the choice, and good object-oriented programming practice is very
much your responsibility.

Location and Point are written such that it is completely unnecessary to
access any of their internal data fields directly:

type
Location = object

X, Y: Integer;
procedure Init(InitX, InitY : Integer);
function GetX ; Integer;
function GetY : Integer;

end;

Point = object(Location)
Visible : Boolean;
procedure Init(InitX, InitY : Integer);
procedure Show;
procedure Hide;
function IsVisible : Boolean;
procedure MoveTo(NewX, NewY : Integer);

end;

There are only three data fields here: X, Y, and Visible. TheMoveTo method
loads new values into X and Y, and the GetX and GetY methods return the
values of X and Y, This leaves no further need to access X or Y directly. Show
and Hide toggle the Boolean Visible between True and False, and the IsVisi-
ble function returns Visible’s current state.

Assuming an instance of type Point called APoint, you would use this suite
of methods to manipulate APoint’s data fields indirectly, like this:

with APoint do
begin

Init(0, 0); { Init new point at 0,0 }
Show; { Make the point visible }

end;
Chapter 1 All about OOP 17

All about OOP
Note that the object’s fields are not accessed at all except by the object’s
methods.

Methods: no
downside

Adding these methods bulks up Point a little in source form, but the Turbo
Pascal smart linker strips out any method code that is never called in a pro-
gram. You therefore shouldn't hang back from giving an object type a
method that might or might not be used in every program that uses the object
type. Unused methods cost you nothing in performance or .EXE file size - if
they're not used, they're simply not there.

A note about data abstrac-
tion

There are powerful advantages to being able to completely decouple Point
from global references. If nothing outside the object “knows” the representa-
tion of its internal data, the programmer who controls the object can alter the
details of the internal data representation -- as long as the method headers
remain the same.

Within some object, data might be represented as an array, but later on (per-
haps as the scope of the application grows and its data volume expands), a
binary tree might be recognized as a more efficient representation. If the
object is completely encapsulated, a change in data representation from an
array to a binary tree will not alter the object’s use at all. The interface to the
object remains completely the same, allowing the programmer to fine-tune
an object’s performance without breaking any code that uses the object.

Extending objects People who first encounter Pascal often take for granted the flexibility of the
standard procedure WriteLn, which allows a single procedure to handle
parameters of many different types:

WriteLn(CharVar); { Outputs a character value }
NriteLn(IntegerVar); { Outputs an integer value }
WriteLn(RealVar); { Outputs a floating-point value }

Unfortunately, standard Pascal has no provision for letting you create
equally flexible procedures of your own.

Object-oriented programming solves this problem through inheritance:
When a descendant type is defined, the methods of the ancestor type are
inherited, but they can also be overridden if desired. To override an inherited
method, simply define a new method with the same name as the inherited
method, but with a different body and (if necessary) a different set of param-
eters.
18 Chapter 1 All about OOP

Methods
A simple example should make both the process and the implications clear.
Let’s define a descendant type to Point that draws a circle instead of a point
on the screen:

type
Circle = object(Point)

Radius : Integer;
procedure Init(InitX, InitY : Integer;

InitRadius : Integer);
procedure Show;
procedure Hide;
procedure Expand(ExpandBy : Integer);
procedure NoveTo(NewX, NewY : Integer);
procedure Contract(ContractHy : Integer);

end;

procedure Circle.Init(InitX, InitY : Integer;
InitRadius : Integer);

begin
Point.Init(InitX, InitY);
Radius := InitRadius;

end;

procedure Circle.Show;
begin

Visible := True;
Graph.Circle(X, Y, Radius);

end;

procedure Circle.Hide;
var

TempColor : Word;
begin

TempColor := Graph.GetColor;
Graph.SetColor(GetBkColor);
Visible := False;
Graph.Circle(X, Y, Radius);
Graph.SetColor(TempColor);

end;

procedure Circle.Expand(ExpandBy : Integer);
begin

Hide;
Radius := Radius + ExpandBy;
if Radius < 0 then

Radius := 0; Show;
end;
Chapter 1 All about OOP 19

All about OOP
procedure Circle.Contract(ContractBy : Integer);
begin

Expand(ContractBy);
end;

procedure Circle.MoveTo(NewX, NewY : Integer);
begin

Hide;
X := NewX;
Y := NewY;
Show;

end;

A circle, in a sense, is a fat point: It has everything a point has (an X,Y loca-
tion, a visible/invisible state) plus a radius. Object type Circle appears to
have only the single field Radius, but don't forget about all the fields that
Circle inherits by being a descendant type of Point. Circle has X, Y, and Visi-
ble as well, even if you don't see them in the type definition for Circle.

Since Circle defines a new field, Radius, initializing if requires a new Init
method that initializes Radius as well as the inherited fields. Rather than
directly assigning values to inherited fields like X, Y and Visible, why not
reuse Point’s initialization method (illustrated by Circle.Init’s first state-
ment). The syntax for calling an inherited method is Ancestor.Method, where
Ancestor is the type identifier of an ancestral object type and Method is a
method identifier of that type.

Note that calling the method you override is not merely good style; it’s
entirely possible that Point.Init (or Location.Init for that matter) performs
some important, hidden initialization. By calling the overridden method, you
ensure that the descendant object type includes its ancestor’s functionality.
In addition, any changes made to the ancestor’s method automatically affects
all its descendants.

After calling Point.Init, Circle.Init can then perform its own initialization,
which in this case consists only of assigning Radius the value passed in Ini-
tRadius.

Instead of drawing and hiding your circle point by point, you can make use
of the BGI Circle procedure. If you do, Circle will also need new Show and
Hide methods that override those of Point. These rewritten Show and Hide
methods appear in the example on page 25.

Dotting resolves the potential problems stemming from the name of the
object type being the same as that of the BGI routine that draws the object
20 Chapter 1 All about OOP

Methods
type on the screen. Graph.Circle is a completely unambiguous way of telling
Turbo Pascal that you’re referencing the Circle routine in GRAPH. TPU and
not the Circle object type.

Important! Whereas methods can be overridden, data fields cannot. Once you define a
data field in an object hierarchy, no descendant type can define a data field
with precisely the same identifier.

Inheriting static
methods

One additional Pointmethod is overridden in the earlier definition of Circle:
MoveTo. If you’re sharp, you might be looking at MoveTo and wondering
whyMoveTo doesn't use the Radius field, and why it doesn't make any BGI
or other library calls specific to drawing circles. After all, the GetX and GetY
methods are inherited all the way from Location without modification. Also,
Circle.MoveTo is completely identical to Point.MoveTo. Nothing was
changed other than to copy the routine and give it Circle’s qualifier in front
of the MoveTo identifier.

This example demonstrates a problem with objects and methods set up in
this fashion. All the methods shown so far in connection with the Location,
Point, and Circle object types are static methods. (The term static was cho-
sen to describe methods that are not virtual, a term we will introduce shortly.
Virtual methods are in fact the solution to this problem, but in order to under-
stand the solution you must first understand the problem.)

The symptoms of the problem are these: Unless a copy of the MoveTo
method is placed in Circle’s scope to override Point’s MoveTo, the method
will not work correctly when it is called from an object of type Circle. If Cir-
cle invokes Point’s MoveTo method, what is moved on the screen is a point
rather than a circle. Only when Circle calls a copy of the MoveTo method
defined in its own scope will circles be hidden and drawn by the nested calls
to Show and Hide.

Why so? It has to do with the way the compiler resolves method calls. When
the compiler compiles Point’s methods, it first encounters Point.Show and
Point.Hide and compiles code for both info the code segment. A little later
down the file it encounters Point.MoveTo, which calls both Point.Show and
Point.Hide. As with any procedure call, the compiler replaces the source
code references to Point.Show and Point.Hide with the addresses of their
generated code in the code segment. Thus, when the code for Point.MoveTo
is called, it in turn calls the code for Point.Show and Point.Hide and every-
thing’s in phase.
Chapter 1 All about OOP 21

All about OOP
So far, this scenario is all classic Turbo Pascal, and would have been true
(except for the nomenclature) since version 1.0. Things change, however,
when you get into inheritance. When Circle inherits a method from Point,
Circle uses the method exactly as it was compiled.

Look again at what Circle would inherit if it inherited Point.MoveTo:

procedure Point.MoveTo(NewX, NewY : Integer);
begin

Hide; { Calls Point.Hide }
X := NewX;
Y := NewY;
Show; { Calls Point.Show }

end;

The comments were added to drive home the fact that when Circle calls
Point.MoveTo, it also calls Point.Show and Point.Hide, not Circle.Show and
Circle.Hide. Point.Show draws a point, not a circle. As long as
Poinf.MoveTo calls Point.Show and Point.Hide, Point.MoveTo can't be
inherited. Instead, it must be overridden by a second copy of itself that calls
the copies of Show and Hide defined within its scope; that is, Circle.Show
and Circle.Hide.

The compiler’s logic in resolving method calls works like this: When a
method is called, the compiler first looks for a method of that name defined
within the object type. The Circle type defines methods named Init, Show,
Hide, Expand, Contract, and MoveTo. If a Circle method were to call one of
those five methods, the compiler would replace the call with the address of
one of Circle’s own methods.

If no method by a name is defined within an object type, the compiler goes
up to the immediate ancestor type, and looks within that type for a method of
the name called. If a method by that name is found, the address of the ances-
tor’s method replaces the name in the descendant’s method’s source code. If
no method by that name is found, the compiler continues up to the next
ancestor, looking for the named method. If the compiler hits the very first
(top) object type, it issues an error message indicating that no such method is
defined.

But when a static inherited method is found and used, you must remember
that the method called is the method exactly as it was defined and compiled
for the ancestor type. If the ancestor’s method calls other methods, the meth-
ods called will be the ancestor’s methods, even if the descendant has meth-
ods that override the ancestor’s methods.
22 Chapter 1 All about OOP

Methods
Virtual methods
and

polymorphism

The methods discussed so far are static methods. They are static for the same
reason that static variables are static: The compiler allocates them and
resolves all references to them at compile time. As you’ve seen, objects and
static methods can be powerful tools for organizing a program’s complexity.

Sometimes, however, they are not the best way to handle methods.

Problems like the one described in the previous section are due to the com-
pile-time resolution of method references. The way out is to be dynamic -
and resolve such references at run time. Certain special mechanisms must be
in place for this to be possible, but Turbo Pascal provides those mechanisms
in its support of virtual methods.

IMPORTANT! Virtual methods implement an extremely powerful tool for generalization
called polymorphism. Polymorphism is Greek for “many shapes,” and it is
just that: A way of giving an action one name that is shared up and down an
object hierarchy, with each object in the hierarchy implementing the action
in a way appropriate to itself.

The simple hierarchy of graphic figures already described provides a good
example of polymorphism in action, implemented through virtual methods.

Each object type in our hierarchy represents a different type of figure on the
screen: a point or a circle. It certainly makes sense to say that you can show
a point on the screen, or show a circle. Later on, if you were to define objects
to represent other figures such as lines, squares, arcs, and so on, you could
write a method for each that would display that object on the screen. In the
new way of object-oriented thinking, you could say that all these graphic fig-
ure types had the ability to show themselves on the screen. That much they
all have in common.

What is different for each object type is the way it must show itself to the
screen. A point is drawn with a point-plotting routine that needs nothing
more than an X,Y location and perhaps a color value. A circle needs an
entirely separate graphics routine to display itself, taking into account not
only X and Y, but a radius as well. Still further, an arc needs a start angle and
an end angle, and a more complex drawing algorithm to take them into
account.

Any graphic figure can be shown, but the mechanism by which each is
shown is specific to each figure. One word, “Show,” is used to show (liter-
ally) many shapes.

That's a good example of what polymorphism is, and virtual methods are
how it is done in Turbo Pascal 5.5.
Chapter 1 All about OOP 23

All about OOP
Early binding vs.
late binding

The difference between a static method call and a virtual method call is the
difference between a decision made now and a decision delayed. When you
code a static method call, you are in essence telling the compiler, “You know
what I want. Go call it.” Making a virtual method call, on the other hand, is
like telling the compiler, “You don’t know what I want - yet. When the time
comes, ask the instance.”

Think of this metaphor in terms of the MoveTo problem mentioned in the
previous section. A call to Circle.MoveTo can only go to one place: the clos-
est implementation ofMoveTo up the object hierarchy. In that case, Cir-
cle.MoveTo would still call Point’s definition of MoveTo, since Point is the
closest up the hierarchy from Circle. Assuming that no descendent type
defined its ownMoveTo to override Point’s MoveTo, any descendent type of
Point would still call the same implementation of MoveTo, The decision can
be made at compile time and that’s all that needs to be done.

When MoveTo calls Show, however, it’s a different story. Every figure type
has its own implementation of Show, so which implementation of Show is
called by MoveTo should depend entirely on what object instance originally
called MoveTo. This is why the call to the Show method within the imple-
mentation of MoveTo must be a delayed decision: When compiling the code
forMoveTo, no decision as to which Show to call can be made. The informa-
tion isn’t available at compile time, so the decision has to be deferred until
run time, when the object instance calling MoveTo can be queried.

The process by which static method calls are resolved unambiguously to a
single method by the compiler at compile time is early binding. In early
binding, the caller and the callee are connected (bound) at the earliest oppor-
tunity, that is, at compile time. With late binding, the caller and the callee
cannot be bound at compile time, so a mechanism is put into place to bind
the two later on, when the call is actually made.

The nature of the mechanism is interesting and subtle, and you'll see how it
works a little later.

Object type
compatibility

Inheritance somewhat changes Turbo Pascal’s type compatibility rules. In
addition to everything else, a descendant type inherits type compatibility
with all its ancestor types. This extended type compatibility takes three
forms:

• between object instances

• between pointers to object instances
24 Chapter 1 All about OOP

Methods
• between formal and actual parameters
In all three forms, however, it is critical to remember that type compatibility
extends only from descendant to ancestor. In other words, descendant types
can be freely used in place of ancestor types, but not vice versa.

Consider these declarations:

type
LocationPtr = ^Location;
PointPtr = ^Point;
CirclePtr = ^Circle;

var
ALocation : Location;
APoint : Point;
ACircle : Circle;
PLocation : LocationPtr;
PPoint : PointPtr;
PCircle : CirclePtr;

With these declarations, the following assignments are legal:

An ancestor object can be
assigned an instance of

any of its descendant
types.

ALocation := APoint;
APoint := ACircle;
ALocation := ACircle;

The reverse assignments are not legal.

This is a concept new to Pascal, and it might be a little hard to remember, at
first, which way the type compatibility goes. Think of it this way: The source
must be able to completely fill the destination. Descendant types contain
everything their ancestor types contain by virtue of inheritance. Therefore a
descendant type is either exactly the same size or (usually) larger than its
ancestors, but never smaller. Assigning an ancestor object to a descendant
object could leave some of the descendant’s fields undefined after the
assignment, which is dangerous and therefore illegal.

In an assignment statement, only the fields that the two types have in com-
mon will be copied from the source to the destination. In the assignment
statement

ALocation := ACircle;

only the X and Y fields of ACircle will be copied to ALocation, since X and Y
are all that types Circle and Location have in common.

Type compatibility also operates between pointers to object types, under the
same general rules as with instances of object types: Pointers to descendants
Chapter 1 All about OOP 25

All about OOP
can be assigned to pointers to ancestors. Again, given the earlier definitions,
these pointer assignments are legal:

PPoint := PCircle;
PLocation := PPoint;
PLocation := PCircle;

Remember, the reverse assignments are not legal.

A formal parameter (either value or var) of a given object type can take as
an actual parameter an object of its own, or any descendant type. Given this
procedure header,

procedure DragIt(Target : Point);

actual parameters could legally be of type Point or Circle, but not type Loca-
tion. Target could also be a var parameter; the same type compatibility rules
apply.

Warning! However, keep in mind that there's a drastic difference between a value
parameter and a var parameter: A var parameter is a pointer to the actual
object passed as a parameter, whereas a value parameter is only a copy of the
actual parameter. That copy, moreover, only includes the fields and methods
included in the formal value parameter’s type. This means the actual param-
eter is literally translated to the type of the formal parameter. A var parame-
ter is more similar to a typecast, in that the actual parameter remains
unaltered.

Similarly, if a formal parameter is a pointer to an object type, the actual
parameter can be a pointer to that object type or a pointer to any of that
object’s descendant types. Given this procedure header,

procedure Figure.Add(NewFigure: PointPtr);

actual parameters could legally be of type PointPtr or CirclePtr, but not type
LocationPtr.

Polymorphic
objects

In reading the previous section, you might have asked yourself: If any
descendant type of a parameter’s type can be passed in the parameter, how
does the user of the parameter know which object type it is receiving? In
fact, the user does not know, not directly. The exact type of the actual param-
eter is unknown at compile time. It could be any one of the object types
descended from the var parameter type, and is thus called a polymorphic
object.
26 Chapter 1 All about OOP

Methods
Now, exactly what are polymorphic objects good for? Primarily, this: Poly-
morphic objects allow the processing of objects whose type is not known at
compile time. This whole notion is so new to the Pascal way of thinking that
an example might not occur to you immediately. (You’ll be surprised, in
time, at how natural it begins to seem. That’s when you'll truly be an object-
oriented programmer.)

Suppose you’ve written a graphics drawing toolbox that supports numerous
types of figures: points, circles, squares, rectangles, curves, and so on. As
part of the toolbox, you want to write a routine that will drag a graphics fig-
ure around the screen with the mouse pointer.

The old way would have been to write a separate drag procedure for each
type of graphics figure supported by the toolbox. You would have had to
write DragCircle, DragSquare, DragRectangle, and so on. Even if the
strong typing of Pascal allowed it (and don’t forget, there are always ways to
circumvent strong typing), the differences between the types of graphics fig-
ures would seem to prevent a truly general dragging routine from being writ-
ten.

After all, a circle has a radius but no sides, a square has one length of side, a
rectangle two different lengths of side, and curves, arrgh....

At this point, clever Turbo Pascal hackers will step forth and say, do it this
way: Pass the graphics figure record to procedure DragIt as the referent of a
generic pointer. Inside DragIt, examine a tag field at a fixed offset inside the
graphics figure record to determine what sort of figure it is, and then branch
using a case statement:

case FigureIDTag of
Point : DragPoint;
Circle : DragCircle;
Square : DragSquare;
Rectangle : DragRectangle;
Curve : DragCurve;

...

Well, placing seventeen small suitcases inside one enormous suitcase is a
slight step forward, but what’s the real problem with this way of doing
things?

What if the user of the toolbox defines some new graphics figure type?

What indeed? What if the user designs traffic signs and wants to work with
octagons for stop signs? The toolbox does not have an Octagon type, so
DragIt would not have an Octagon label in its case statement, and would
Chapter 1 All about OOP 27

All about OOP
therefore refuse to drag the new Octagon figure. If it were presented to
DragIt, Octagon would fall out in the case statement’s else clause as an
“unrecognized figure.”

Plainly, building a toolbox of routines for sale without source code suffers
from this problem: The toolbox can only work on data types that it “knows,”
that is, that are defined by the designers of the toolbox. The user of the tool-
box is powerless to extend the function of the toolbox in directions unantici-
pated by the toolbox designers. What the user buys is what the user gets.
Period.

The way out is to use Turbo Pascal’s extended type compatibility rules for
objects and design your application to use polymorphic objects and virtual
methods. If a toolbox DragIt procedure is set up to work with polymorphic
objects, it will work with any objects defined within the toolbox - and any
descendant objects that you define yourself. If the toolbox object types use
virtual methods, the toolbox objects and routines can work with your custom
graphics figures on the figures’ own terms. A virtual method you define
today is callable by a toolbox. TPU unit file that was written and compiled a
year ago. Object-oriented programming makes it possible, and virtual meth-
ods are the key.

Understanding how virtual methods make such polymorphic method calls
possible requires a little background on how virtual methods are declared
and used.

Virtual methods A method is made virtual by following its declaration in the object type with
the new reserved word virtual. Remember that if you declare a method in an
ancestor type virtual, all methods of the same name in any descendant must
also be declared virtual to avoid a compiler error.

Here are the graphics shape objects you’ve been seeing, properly virtualized:

type
Location = object X, Y : Integer;

procedure Init(InitX, InitY : Integer);
function GetX : Integer;
function GetY : Integer;

end;
Point = object(Location)

Visible : Boolean;
constructor Init(InitX, InitY : Integer);
procedure Show; virtual;
procedure Hide; virtual;
28 Chapter 1 All about OOP

Methods
function IsVisible : Boolean;
procedure MoveTo(NewX, NewY : Integer);

end;
Circle = object(Point)

Radius : Integer;
constructor Init(InitX, InitY : Integer;

InitRadius : Integer);
procedure Show; virtual;
procedure Hide; virtual;
procedure Expand(ExpandBy : Integer); viztua1;
procedure Contract(ContractBy : Integer); virtual;

end;

Notice first of all that theMoveTo method shown in the last iteration of type
Circle is gone from Circle’s type definition. Circle no longer needs to over-
ride Point’s MoveTo method with an unmodified copy compiled within its
own scope. Instead, MoveTo can now be inherited from Point, with all of
MoveTo’s nested method calls going to Circle’s methods rather than Point’s,
as happens in an all-static object hierarchy.

Every object type that has
virtual methods must have

a constructor.

We suggest the use of the
identifier Init for object con-

structor.

Also, notice the new reserved word constructor replacing the reserved word
procedure for Point.Init and Circle.Init. A constructor is a special type of
procedure that does some of the setup work for the machinery of virtual
methods. Furthermore, the constructor must be called before any virtual
method is called. Calling a virtual method without previously calling the
constructor can cause system lockup, and the compiler has no way to check
the order in which methods are called.

Warning! Each individual instance of an object must be initialized by a separate con-
structor call. If is not sufficient to initialize one instance of an object and
then assign that instance to additional instances. The additional instances,
while they might contain correct data, will not be initialized by the assign-
ment statements, and will lock up the system if their virtual methods are
called.

What do constructors construct? Every object type has something called a
virtual method table (VMT) in the data segment. The VMT contains the
object type’s size, and for each of its virtual methods, a pointer to the code
implementing that method. What the constructor does is establish a link
between the instance calling the constructor and the object type’s VMT.
Chapter 1 All about OOP 29

All about OOP
That’s important to remember: There is only one virtual method table for
each object type. Individual instances of an object type (that is, variables of
that type) contain a link to the VMT - they do not contain the VMT itself.
The constructor sets the value of that link to the VMT - which is why you
can launch execution into nowhere by calling a virtual method before calling
the constructor.

Range checking
virtual-method

calls
The default state of $R is

inactive. ($R-).
During program development, you might wish to take advantage of a safety
net that Turbo Pascal 5.5 places beneath virtual method calls. If the $R tog-
gle is in its active state, {$R+}, all virtual method calls are checked for the
initialization status of the instance making the call. If the instance making
the call has not been initialized by its constructor, a range check run-time
error occurs.

Once you’ve shaken out a program and are certain that no method calls from
uninitialized instances are present, you can speed your code up somewhat by
setting the $R toggle to its inactive state, ($R-}. Method calls from uninitial-
ized instances will no longer be checked for, and will probably lock up your
system if found.

Once virtual,
always virtual

You'll notice that both Point and Circ1e have methods named Show and
Hide. All method headers for Show and Hide are tagged as virtual methods
with the reserved word virtual. Once an ancestor object type tags a method
as virtual, all its descendant types that implement a method of that name
must tag that method virtual as well. In other words, a static method can
never override a virtual method. If you try, a compiler error will result.

You should also keep in mind that the method heading cannot change in any
way downward in an object hierarchy once the method is made virtual. You
might think of each definition of a virtual method as a gateway to all of
them. For this reason, the headers for all implementations of the same virtual
method must be identical, right down to the number and type of parameters.
This is not the case for static methods; a static method overriding another
can have different numbers and types of parameters as necessary.
30 Chapter 1 All about OOP

Methods
An example of late
binding

To show how to use polymorphic objects with late binding in a Turbo Pascal
5.5 program, let’s return to the graphics figures unit described earlier on
page 20. The goal is to create a unit that exports several graphics figure
objects (like Point and Circle) and a generalized means of dragging any of
them around the screen. The unit, named Figures, will be a simple imple-
mentation of the graphics toolbox discussed earlier. To demonstrate Figures,
let's build a simple program that defines a new figure object type unknown to
Figures and then uses virtual methods to drag that new figure type around
the screen.

Think about how graphics figures are alike and how they differ. The differ-
ences are obvious, and all involve shapes and angles and curves drawn on
the screen. In the simple graphics program we’ll describe, figures displayed
on a screen share these attributes:

• They have a location, given as X,Y. The point within a figure considered
to lie at this X,Y position is called the figure's anchor point.

• They can be either visible or invisible, specified by a Boolean value of
True (visible) or False (invisible).

If you recall the earlier examples, these are precisely the characteristics of
the Location and Point object types. Point, in fact, represents a sort of
“grandparent” type from which all graphics figure objects are descended.

The rationale demonstrates an important principle of object-oriented pro-
gramming: In defining a hierarchy of object types, gather all common
attributes into a single type and allow the hierarchy of types to inherit all
common elements from that type.

A note about abstract
objects

Type Point acts as a template from which its descendant object types can
take elements common to all types in the hierarchy. In this example, no
object of type Point will ever actually be drawn to the screen, though no
harm would come of doing so. (Calling Point.Showwould obviously display
a point on the screen.) An object type specifically designed to provide inher-
itable characteristics for its descendants we call an abstract object type. The
point of an abstract type is to have descendants, not instances.

Go back to page 35 and read Point over once more, this time as a compen-
dium of all the things that graphics Figures have in common. Point inherits X
and Y from the even earlier Location type, but Point contains X and Y none-
theless, and can bequeath them to its descendant types. Note that none of
Point’smethods address the shape of a figure, but all figures can be visible or
invisible, and be moved around on the screen.
Chapter 1 All about OOP 31

All about OOP
Point also has an important function as a “broadcasting station” for changes
to the object hierarchy as a whole. If some new feature is devised that applies
to all graphics figures (color support, for example), it can be added to all
object types descended from Point simply by adding the new features to
Point. The new features are instantly callable from any of Point’s descendant
types. A method for moving a figure to the current position of the mouse
pointer, for example, could be added to Point without changing any figure-
specific methods, since such a method would only affect the two fields X and
Y.

Obviously, if the new feature must be implemented differently for different
figures, there must be a whole family of figure-specific virtual methods
added to the hierarchy, each method overriding the one belonging to its
immediate ancestor. Color, for example, would require minor changes to
Show and Hide up and down the line, since the syntax of many GRAPH.
TPU drawing routines depends on how drawing color is specified.

Procedure or
method?

A major goal in designing the FIGURES.PAS unit is to allow users of the
unit to extend the object types defined in the unit - and still make use of all
the unit’s features. It is an interesting challenge to create some means of
dragging an arbitrary graphics figure around the screen in response to user
input.

There are two ways to go about it. The way that might first occur to tradi-
tional Pascal programmers is to have FIGURES.PAS export a procedure that
takes a polymorphic object as a var parameter, and then drags that object
around the screen. Such a procedure is shown here:

procedure DragIt(var AnyFigure: Point; DragBy: Integer);
var

DeltaX, Delta Y: Integer; FigureX,FigureY : Integer;

This procedure works fine,
but the OOP way of doing

it is more elegant (see
page 42).

begin
AnyFigure.Show; { Display figure to be dragged }
FigureX := AnyFigure.GetX; { Get the initial X,Y of figure }
FigureY := AnyFigure.GetY;
{ This is the drag loop }
while GetDelta(DeltaX, DeltaY) do
begin { Apply delta to figure X,Y: }

FigureX := FigureX + (DeltaX * DragBy);
FigureY := FigureY + (DeltaY * DragBy);
{ And tell the figure to move }
AnyFigure.MoveTo(FigureX, FigureY);

end;
end;
32 Chapter 1 All about OOP

Methods
DragIt calls an additional procedure, GetDelta, that obtains some sort of
change in X and Y from the user. It could be from the keyboard, or from a
mouse, or a joystick. (For simplicity’s sake, our example will obtain input
from the arrow keys on the keypad.)

What’s important to notice about DragIt is that any object of type Point or
any type descended from Point can be passed in the AnyFigure var parame-
ter. Instances of Point or Circle, or any type defined in the future that inherits
from Point or Circle, can be passed without complication in AnyFigure.

How does DragIt’s code know what object type is actually being passed? It
doesn’t - and that's OK. DragIt only references identifiers defined in type
Point. By inheritance, those identifiers are also defined in any descendant of
type Point. The methods GetX, GetY, Show, and MoveTo are just as truly
present in type Circle as in type Point, and would be present in any future
type defined as a descendant of either.

GetX, GetY, andMoveTo are static methods, which means that DragIt knows
the procedure address of each at compile time. Show, on the other hand, is a
virtual method. There is a different implementation of Show for both Point
and Circle - and DragIt does not know at compile time which implementa-
tion is to be called. In brief, when DragIt is called, DragIt looks up the
address of the correct implementation of Show in the VMT of the instance
passed in AnyFigure. If the instance is a Circle, DragIt calls Circle.Show. If
the instance is a Point, DragIt calls Point.Show. The decision as to which
implementation of Show will be called is not made until run time, and not, in
fact, until the moment in the program when DragIt must call virtual method
Show.

Now, DragIt works quite well, and if it is exported by the toolbox unit, it can
drag any descendant type of Point around the screen, whether that type
existed when the toolbox was compiled or not. But you have to think a little
further: If any object can be dragged around the screen, why not make drag-
ging a feature of the graphics objects themselves?

In other words, why not make DragIt a method? Make it a method!

Indeed. Why pass an object to a procedure to drag the object around the
screen? That's old-school thinking. If a procedure can be written to drag any
graphics figure object around the screen, then the graphics figure objects
ought to be able to drag themselves around the screen.

In other words, procedure DragIt really ought to be method Drag.
Chapter 1 All about OOP 33

All about OOP
Adding a new method to an existing object hierarchy involves a little
thought. How far up the hierarchy should the method be placed? Think about
the utility provided by the method and decide how broadly applicable that
utility is. Dragging a figure involves changing the location of the figure in
response to input from the user. Metaphorically, you might think of a Drag
method as MoveTo with an internal power source. In terms of inheritability,
it sits right beside MoveTo - any object to which MoveTo is appropriate
should also inherit Drag. Drag should thus be added to our abstract object
type, Point, so that all Point’s descendants can share it.

Does Drag need to be virtual? The litmus test for making any method virtual
is whether the functionality of the method is expected to change somewhere
down the hierarchy tree. Drag is a closed-ended sort of feature. It only
manipulates the X,Y position of a figure, and one doesn’t imagine that it
would become more than that. Therefore, it probably doesn’t need to be vir-
tual.

Use caution in any such decision: If you don’t make Drag virtual, you lock
out all opportunities for users of FIGURES.PAS to alter it in their efforts to
extend FIGURES.PAS. You might not be able to imagine the circumstances
under which a user might want to rewrite Drag. That doesn’t for a moment
mean that such circumstances will not arise.

For example, Drag has a joker in it that tips the balance in favor of its being
virtual: It deals with event handling, that is, the interception of input from
devices like the keyboard and mouse, which occur at unpredictable times yet
must be handled when they occur. Event handling is a messy business, and
often very hardware-specific. If your user has some input device that does
not meld well with Drag as you present it, the user will be helpless to rewrite
Drag. Don’t burn any bridges. Make Drag virtual.

The process of converting DragIt to a method and adding the method to
Point is almost trivial. Within the Point object definition, Drag is just
another method header:

Point = object(Location)
Visible : Boolean;
constructor Init(InitX, InitY : Integer);
procedure Show; virtual;
procedure Hide; vtrtual;
function IsVisible : Boolean;
procedure MoveTo(NewX, NewY : Integer);
procedure Drag(DragHy : Integer); virtual;

end;
34 Chapter 1 All about OOP

Methods
The position of Drag’s method header in the Point object definition is unim-
portant. Remember, methods can be declared in any order, but data fields
must be defined before the first method declaration.

Changing the procedure DragIt to the method Drag is almost entirely a mat-
ter of applying Point’s scope to DragIt. In the DragIt procedure, you had to
specify AnyFigure.Show, AnyFigure.GetX, and so on. Drag is now a part of
Point, so you no longer have to qualify method names. AnyFigure.GetX is
now simply GetX, and so on. And of course, the AnyFigure var parameter is
banished from the parameter line. The implied Self parameter now tells you
which object instance is calling Drag.

The complete source code for FIGURES.PAS, including Drag implemented
as a virtual method, is shown next:

unit Figures; { Virtual methods 6 polymorphic objects }
interface
uses Graph, Crt;
type

Location = object
X, Y : Integer;
procedure Init(InitX, InitY : Integer);
function GetX : Integer;
function GetY : Integer;

end;
PointPtr = ^Point;
Point = object(Location)

Visible : Boolean;
constructor Init(InitX, InitY : Integer);
destructor Done; virtual;
procedure Show; virtual;
procedure Hide; vt.rtual;
function IsVisible : Boolean;
procedure MoveTo(NewX, NewY : Integer);
procedure Drag(DragBy : Integer); virtual;

end;
CirclePtr = ^Circle;
Circle = object(Point) Radius : Integer;

constructor Init(InitX, InitY : Integer;
InitRadius : Integer);

procedure Show; virtual;
procedure Hide; virtual;
procedure Expand(ExpandBy : Integer); virtual;
procedure Contract(ContractBy : Inteqer); virtual;

end;
implementation
{--}
{ Location's method implementations: }
Chapter 1 All about OOP 35

All about OOP
{--}
procedure Location.Init(InitX, InitY: Integer);
begin

X:= InitX;
Y:= InitY;

end;

function Location.GetX : Integer;
begin

GetX := X;
end;

function Location.GetY : Integer;
begin

GetY := Y;
end;

{--}
{ Point's method implementations: }
{--}

constructor Point.Init(InitX, InitY : Integer);
begin

Location.Init(InitX, InitY);
Visible := False;

end;

destructor Point.Done;
begin

Hide;
end;

procedure Point.Show;
begin

Visible := True;
PutPixel(X, Y, GetColor);

end;

procedure Point.Hide;
begin

Visible := False;
PutPixel(X, Y, GetBkColor);

end;

function Point.IsVisible : Boolean;
begin

IsVisible := Visible;
end;
36 Chapter 1 All about OOP

Methods
procedure Point.NoveTo(NewX, NewY : Integer);
begin

Hide;
X := NewX;
Y := NewY;
Show;

end;

function GetDelta(var DeltaX : Integer;
var DeltaY : Integer) : Boolean;

var
KeyChar : Char;
Quit : Boolean;

begin
DeltaX := 0; DeltaY := 0; { 0 means no change in position; }
GetDelta := True; { True means we return a delta }
repeat

KeyChar := ReadKey; { First, read the keystroke }
Quit := True; { Assume it's a useable key }
case Ord(KeyChar) of

0: begin { 0 means an extended, 2-byte code }
KeyChar := ReadKey; { Read second byte of code }
case Ord(KeyChar) of

72: DeltaY := -1; { Up arrow; decrement Y }
80: DeltaY := 1; { Down arrow; increment Y }
75: DeltaX := -1; { Left arrow; decrement X }
77: DeltaX := 1; { Right arrow; increment X }
else Quit := False; { Ignore any other code }

end; { case)
end;

13: GetDelta := False; { CR pressed means no delta }
else Quit := False; { Ignore any other keystroke }

end; (case)
until Quit;

end;

procedure Point.Drag(DragBy : Integer);
var

DeltaX, DeltaY : Integer;
FigureX, FigureY : Integer;

begin
Show; { Display figure to be dragged }
FigureX := GetX; { Get the initial position of figure }
FigureY := GetY;
{ This is the drag loop : }
while GetDelta(DeltaX, DeltaY) do
begin { Apply delta to figure X,Y: }

FigureX := FigureX + (DeltaX * DragBy);
FigureY := FigureY + (DeltaY * DragBy);
Chapter 1 All about OOP 37

All about OOP
MoveTo(FigureX, FigureY); { And tell the figure to move }
end;

end;

{ - }
{ Circle's method implementations: }
{ - }

constructor Circle. Init (InitX, InitY: Integer;
InitRadius : Integer);

begin
Point.Init(InitX, InitY);
Radius := InitRadius;

end;

procedure Circle.Show;
begin

Visible := True;
Graph.Circle(X, Y, Radius);

end;

procedure Circle.Hide;
var

TempColor : Word;
begin

TempColor := Graph.GetColor;
Graph.SetColor(GetBkColor);
Visible := False;
Graph.Circle(X, Y, Radius);
Graph.SetColor(TempColor);

end;

procedure Circle.Expand(ExpandBy : Integer);
begin

Hide;
Radius := Radius + ExpandBy;
if Radius <0 then

Radius := 0;
Show;

end;

procedure Circle.Contract(ContractBy : Integer);
begin

Expand(-ContractBy);
end;

{ No initialization section }
end.
38 Chapter 1 All about OOP

Methods
By now, you should be thinking in terms of building functionality into
objects in the form of methods rather than building procedures and passing
objects to them as parameters. Ultimately you’ll come to design programs in
terms of activities that objects can do, rather than as collections of procedure
calls that act upon passive data.

It's a whole new world.

Object
extensibility

The important thing to notice about toolbox units like FIGURES.PAS is that
the object types and methods defined in the unit can be distributed to users in
linkable .TPU form only, without source code. (Only a listing of the interface
portion of the unit need be released.) Using polymorphic objects and virtual
methods, the users of the .TPU file can still add features to it to suit their
needs.

This novel notion of taking someone else’s program code and adding func-
tionality to it without benefit of source code is called extensibility. Extensi-
bility is a natural outgrowth of inheritance: You inherit everything that all
your ancestor types have, and then you add what new capability you need.
Late binding lets the new meld with the old at run time, so the extension of
the existing code is seamless and costs you no more in performance than a
quick trip through the virtual method table.

The following program makes use of the Figures unit, and extends it by cre-
ating a new graphics figure object, Arc, as a descendant type of Circle. The
object Arc could have been written long after FIGURES.PAS was compiled,
and yet an object of type Arc can make use of inherited methods likeMoveTo
or Drag without any special considerations. Late binding and Arc’s virtual
methods allows the Drag method to call Arc’s Show and Hide methods even
though those methods might have been written long after Point.Drag itself
was compiled:

program FigureDemo; { Extending FIGURES.PAS with type Arc }
uses Crt, DOS, Graph, Figures;
type

Arc = object(Circle)
StartAngle, EndAngle : Integer;
constructor Init(InitX, InitY : Integer;

InitRadius : Integer;
InitStartAngle, InitEndAngle : Integer);

procedure Show; virtual;
procedure Hide; virtual;

end;
Chapter 1 All about OOP 39

All about OOP
var
GraphDriver : Integer;
GraphNode : Integer;
ErrorCode : Integer;
AnArc : Arc;
ACircle : Circle;

{ -}
{ Arc's method declarations:
{ -}
constructor Arc.Init(InitX, InitY: Integer;

InitRadius : Integer;
InitStartAngle, InitEndAngle : Integer);

begin
Circle.Init(InitX, InitY, InitRadius);
StartAngle := InitStartAngle;
EndAngle := InitEndAngle;

end;

procedure Arc.Show;
begin

Visible := True;
Graph.Arc(X, Y, StartAngle, EndAngle, Radius);

end;

procedure Arc.Hide;
var

TempColor : Word;
begin

TempColor := Graph.GetColor;
Graph.SetColor(GetBkColor);
Visible := False;
{ Draw the arc in the background color to hide it }
Graph.Arc(X, Y, StartAngle, EndAngle, Radius);
SetColor(TempColor);

end;

{ - }
{ Main program:
{ - }
begin

GraphDriver := Detect; { Let the BGI determine what board
you're using }

InitGraph(GraphDriver, GraphMode, ‘’);
if GraphResult <> GrOK then
begin

WriteLn('>>Halted on graphics error.’,
GraphErrorMsg(GraphDriver));
40 Chapter 1 All about OOP

Methods
Halt (1);
end;
{ All descendants of type Point contain virtual methods and }
{ *must* be initialized before use through a constructor call.}
ACircle.Init(151, 82, { Initial X,Y at 151,82 }

50); { Initial radius of 50 pixels }
AnArc.Init(151, 82, { Initial X,Y at 151,82 }

25, { Initial radius of 50 pixels }
0, 90); { Start angle: 0; End angle: 90 }

{ Replace AnArc with ACircle to drag a circle instead of an }
{ arc. Press Enter to stop dragging and end the program. }
AnArc.Drag(5); { Parameter is # of pixels to drag by }
CloseGraph;

end.

 Static or virtual
methods

In general, you should make methods virtual. Use static methods only when
you want to optimize for speed and memory efficiency. The trade-off, as
you’ve seen, is in extensibility.

Let’s say you are declaring an object named Ancestor, and within Ancestor
you are declaring a method named Action. How do you decide whether
Action should be virtual or static? Here's the rule of thumb: Make Action vir-
tual if there is a possibility that some future descendant of Ancestor will
override Action, and you want that future code to be accessible to Ancestor.

Now apply this rule to the graphics objects you’ve seen in this chapter. In
this case, Paint is the ancestor object type, and you must decide whether to
make its methods static or virtual. Let’s consider its Show, Hide, andMoveTo
methods. Since each different type of figure has its own means of displaying
and erasing itself, Show and Hide will be overridden by each descendant fig-
ure. Moving a graphics figure, however, seems to be the same for all descen-
dants: CallHide to erase the figure, change its X,Y coordinates, and then call
Show to redisplay the figure in its new location. Since thisMoveTo algorithm
can be applied to any figure with a single anchor point at X,Y, it’s reasonable
to make Point.MoveTo a static method that will be inherited by all descen-
dants of Point; but Show and Hide will be overridden and must be virtual so
that Point.MoveTo can call its descendants’ Show and Hide methods.

On the other hand, remember that if an object has any virtual methods, a
VMT will be created for that object type in the data segment and every
object instance will have a link to the VMT. Every call to a virtual method
must pass through the VMT, while static methods are called directly. Though
the VMT lookup is very efficient, calling a method that is static is still a little
faster than calling a virtual one. And if there are no virtual methods in your
Chapter 1 All about OOP 41

All about OOP
object, then there is no VMT in the data segment and - more significantly -
no link to the VMT in every object instance.

The added speed and memory efficiency of such methods must be balanced
against the flexibility that virtual methods allow: extension of existing code
long after that code is compiled. Keep in mind that users of your object type
might think of ways to use it that you never dreamed of, which is, after all,
the whole point.

Dynamic objects All the object examples shown so far have had static instances of object
types that were named in a var declaration and allocated in the data segment
and on the stack.

The use of the word static
does not relate in any way

to static methods.

var
ACircle : Circle;

Objects can be allocated on the heap and manipulated with pointers, just as
the closely related record types have always been in Pascal. Turbo Pascal 5.5
includes some powerful extensions to make dynamic allocation and deallo-
cation of objects easier and more efficient.

Objects can be allocated as pointer referents with the New procedure:

var
PCircle : ^Circle;

New(PCircle);

As with record types, New allocates enough space on the heap to contain an
instance of the pointer’s base type, and returns the address of that space in
the pointer.

If the dynamic object contains virtual methods, it must then be initialized
with a constructor call before any calls are made to its methods:

PCircle^.Init {600, 100, 30);

Method calls can then be made normally, using the pointer name and the ref-
erence symbol ^ (a caret) in place of the instance name that would be used in
a call to a statically allocated object:

OldXPosition := PCircle^.GetX;
42 Chapter 1 All about OOP

Methods
Allocation and
initialization with

New

Turbo Pascal 5.5 extends the syntax of New to allow a more compact and
convenient means of allocating space for an object on the heap and initializ-
ing the object with one operation. New can now be invoked with two param-
eters: the pointer name as the first parameter, and the constructor invocation
as the second parameter:

New(PCircle, Init(600, 100, 30));

When you use this extended syntax for New, the constructor Init actually per-
forms the dynamic allocation, using special entry code generated as part of a
constructor’s compilation. The instance name cannot precede Init, since at
the time New is called, the instance being initialized with Init does not yet
exist. The compiler identifies the correct Initmethod to call through the type
of the pointer passed as the first parameter.

New has also been extended to allow it to act as a function returning a
pointer value. The parameter passed to New is the type of the pointer to the
object rather than the pointer variable itself:

type
ArcPtr = ^Arc;

var
PArc : ArcPtr;

PArc := New(ArcPtr);

Note that with version 5.5, the function-form extension to New applies to all
data types, not only to object types:

type
CharPtr = ^Char; { Char is not an object type... }

var
PChar : CharPtr;

PChar := New(CharPtr);

The function form of New, like the procedure form, can also take the object
type’s constructor as a second parameter:

PArc:= New(ArcPtr, Init(600, 100, 25, 0, 90));

A new standard procedure,
Fail, helps you do error

recovery in construction;
see page 107.

A parallel extension to Dispose has been defined for Turbo Pascal 5.5, as
fully explained in the following sections.
Chapter 1 All about OOP 43

All about OOP
Disposing
dynamic objects

Just like traditional Pascal records, objects allocated on the heap can be deal-
located with Dispose when they are no longer needed:

Dispose (PCircle);

There can be more to getting rid of an unneeded dynamic object than just
releasing its heap space, however. An object can contain pointers to dynamic
structures or objects that need to be released or “cleaned up” in a particular
order, especially when elaborate dynamic data structures are involved.
Whatever needs to be done to dean up a dynamic object in an orderly fashion
should be gathered together in a single method so that the object can be elim-
inated with one method call:

MyComplexObject.Done;

We suggest the identities
Done for cleanup methods

that close up shop once an
object is no longer needed.

The Done method should encapsulate all the details of cleaning up its object
and all the data structures and objects nested within it.

It is legal and often useful to define multiple cleanup methods for a given
object type. Complex objects might need to be cleaned up in different ways
depending on how they were allocated or used, or depending on what mode
or state the object was in when it was cleaned up.

Destructors Turbo Pascal 5.5 provides a special type of method called a destructor for
cleaning up and disposing of dynamically allocated objects. A destructor
combines the heap deallocation step with whatever other tasks are necessary
for a given object type. As with any method, multiple destructors can be
defined for a single object type.

A destructor is defined with all the object’s other methods in the object type
definition:

Point = object(Location)
Visible : Boolean;
Next : PointPtr;
constructor Init(InitX, InitY : Integer);
destructor Done; virtual;
procedure Show; virtual;
procedure Hide; virtual;
function IsVisible : Boolean;
procedure MoveTo(NewX, NewY : Integer);
procedure Drag(DragBy : Integer); virtual;

end;
44 Chapter 1 All about OOP

Methods
Destructors can be inherited, and they can be either static or virtual. Because
different shutdown tasks are usually required for different object types, we
recommend that destructors always be virtual so that in every case the cor-
rect destructor will be executed for its object type.

Keep in mind that the reserved word destructor is not needed for every
cleanup method, even if the object type definition contains virtual methods.
Destructors really operate only on dynamically allocated objects. In cleaning
up a dynamically allocated object, the destructor performs a special service:
It guarantees that the correct number of bytes of heap memory will always
be released. There is, however, no harm in using destructors with statically
allocated objects; in fact, by not giving an object type a destructor, you pre-
vent objects of that type &om getting the full benefit of Turbo Pascal’s
dynamic memory management.

Destructors really come into their own when polymorphic objects must be
cleaned up and their heap allocation released. A polymorphic object is an
object that has been assigned to an ancestor type by virtue of Turbo Pascal’s
extended type compatibility rules. In the running example of graphics fig-
ures, an instance of object type Circle assigned to a variable of type Point is
an example of a polymorphic object. These rules apply to pointers to objects
as well; a pointer to Circle can be freely assigned to a pointer to type Point,
and the referent of that pointer will also be a polymorphic object.

The term polymorphic is appropriate because the code using the object
doesn’t know at compile time precisely what type of object is on the end of
the string - only that the object will be one of a hierarchy of objects
descended from the specified type.

The size of object types differ, obviously. So when it comes time to clean up
a polymorphic object allocated on the heap, how does Dispose know how
many bytes of heap space to release? No information on the size of the
object can be gleaned from a polymorphic object at compile time.

The destructor solves the conundrum by going to the place where the infor-
mation is stored: in the instance variable's VMT. In every object type’s VMT
is the size in bytes of the object type. The VMT for any object is available
through the invisible Self parameter passed to the method on any method
call. A destructor is just a special kind of method, and it receives a copy of
Self on the stack when an object calls it. So while an object might be poly-
morphic at compile time, it is never polymorphic at run time, thanks to late
binding.
Chapter 1 All about OOP 45

All about OOP
To perform this late-bound memory deallocation, the destructor must be
called as part of the extended syntax for the Dispose procedure:

Dispose (PPoint, Done);

(Calling a destructor outside of a Dispose call does no automatic dealloca-
tion at all.) What happens here is that the destructor of the object pointed to
by PPoint is executed as a normal method call. As the last thing it does,
however, the destructor looks up the size of its instance type in the instance’s
VMT, and passes the size to Dispose. Dispose completes the shutdown by
deallocating the correct number of bytes of heap space that had previously
belonged to PPoint^. The number of bytes released will be correct whether
PPoint points to an instance of type Point or to one of Point’s descendant
types like Circle or Arc.

Note that the destructor method itself can be empty and still perform this ser-
vice:

destructor AnObject.Done;
begin
end;

What performs the useful work in this destructor is not the method body but
the epilog code generated by the compiler in response to the reserved word
destructor. In this, it is similar to a unit that exports nothing, but performs
some “invisible” service by executing an initialization section before pro-
gram startup. The action is all behind the scenes.

An example of
dynamic object

allocation

The final example program provides some practice in the use of objects allo-
cated on the heap, including the use of destructors for object deallocation.
The program shows how a linked list of graphics objects might be created on
the heap and cleaned up using destructor calls when no longer required.

Building a linked list of objects requires that each object contain a pointer to
the next object in the list. Type Point contains no such pointer. The easy way
out would be to add a pointer to Point, and in doing so ensure that all of
Point’s descendant types also inherit the pointer. However, adding anything
to Point requires that you have the source code for Point, and as said earlier,
one advantage of object-oriented programming is the ability to extend exist-
ing objects without necessarily being able to recompile them.

The solution that requires no changes to Point creates a new object type not
descended from Point. Type List is a very simple object whose purpose is to
46 Chapter 1 All about OOP

Methods
head up a list of Point objects. Because Point contains no pointer to the next
object in the list, a simple record type, Node, provides that service. Node is
even simpler than List, in that it is not an object, has no methods, and con-
tains no data except a pointer to type Point and a pointer to the next node in
the list.

List has a method that allows it to add new figures to its linked list of Node
records by inserting a new instance of Node immediately after itself, as a ref-
erent to its Nodes pointer field. The Add method takes a pointer to a Point
object, rather than a Point object itself. Because of Turbo Pascal 5.5’s
extended type compatibility, pointers to any type descended from Point can
also be passed in the Item parameter to List.Add.

Program ListDemo declares a static variable, AList, of type List, and builds a
linked list with three nodes. Each node points to a different graphics figure
that is either a Point or one of its descendants. The number of bytes of free
heap space is reported before any of the dynamic objects are created, and
then again after all have been created. Finally, the whole structure, including
the three Node records and the three Point objects, are cleaned up and
removed from the heap with a single destructor call to the static List object,
AList.

Fig 1.2
Chapter 1 All about OOP 47

All about OOP
Disposing of a
complex data

structure on the
heap

List.Done is well worth a close look. Shutting down a List object involves
disposing of three different kinds of structures: the polymorphic graphics
figure objects in the list, the Node records that hold the list together, and (if it
is allocated on the heap) the List object that heads up the list. The whole pro-
cess is invoked by a single call to AList’s destructor:

AList.Done;

The code for the destructor merits examination:

destructor List.Done;
var

N: NodePtr;
begin

while Nodes <> nil do
begin

N := Nodes;
Dispose(N^.Item, Done);
Nodes := N^.Next;
Dispose(N);

end;
end;

The list is cleaned up from the list head by the “hand-over-hand” algorithm,
metaphorically similar to pulling in the string of a kite: Two pointers, the
Nodes pointer within AList and a working pointer N, alternate their grasp on
the list while the first item in the list is disposed of. A dispose call deallo-
cates storage for the first Point object in the list (Item^); then Nodes is
advanced to the next Node record in the list by the statement Nodes: =

N^.Next; the Node record itself is deallocated; and the process repeats until
the list is gone.

The important thing to note in the destructor Done is the way the Point
objects in the list are deallocated:

Dispose(N^.Item, Done);

Here, N^.Item is the first Point object in the list, and the Donemethod called
is its destructor. Keep in mind that the actual type of N^.Item is not necessar-
ily Point, but could as well be any descendant type of Point. The object
being cleaned up is a polymorphic object, and no assumptions can be made
about its actual size or exact type at compile time. In the earlier call to Dis-
pose, once Done has executed all the statements it contains, the “invisible”
epilog code in Done looks up the size of the object instance being cleaned up
48 Chapter 1 All about OOP

Methods
in the object’s VMT. Done passes that size to Dispose, which then releases
the exact amount of heap space the polymorphic object actually occupied.

Remember that polymorphic objects must be cleaned up this way, through a
destructor call passed to Dispose, if the correct amount of heap space is to be
reliably released.

In the example program, AList is declared as a static variable in the data seg-
ment. AList could as easily have been itself allocated on the heap, and
anchored to reality by a pointer of type ListPtr. If the head of the list had
been a dynamic object too, disposing of the structure would have been done
by a destructor call executed within Dispose:

var PList : ListPtr;
...

Dispose(PList,Done);

Here, Dispose calls the destructor method Done to clean up the structure on
the heap. Then, once Done is finished, Dispose deallocates storage for
PList’s referent, removing the head of the list from the heap as well.

The following program uses the same FIGURES.PAS unit described on page
42. It implements an Arc type as a descendant of Point, creates a List object
heading up a linked list of three polymorphic objects compatible with Point,
and then disposes of the whole dynamic data structure with a single destruc-
tor call to AList.Done.

program ListDemo; { Dynamic objects & destructors }
uses Graph, Figures;
type

ArcPtr = ^Arc;
Arc = object(Circle)

StartAngle, EndAngle : Integer;
constructor Init(InitX, InitY : Integer;

InitRadius : Integer;
InitStartAngle, InitEndAngle : Integer);

procedure Show; virtual;
procedure Hide; virtual;

end;
NodePtr = ^Node;
Node = record

Item : PointPtr;
Next : NodePtr;

end;
ListPtr = ^List;
List = object

Nodes: NodePtr;
constructor Init;
Chapter 1 All about OOP 49

All about OOP
destructor Done; virtual;
procedure Add(Item : PointPtr);
procedure Report;

end;
var

GraphDriver : Integer;
GraphMode : Integer;
Temp : String;
AList : List;
PArc : ArcPtr;
PCircle : CirclePtr;
RootNode : NodePtr;

{ - }
{ Procedures that are not methods: }
{ - }
procedure OutTextLn (TheText: String);
begin

OutText (TheText);
MoveTo(0, GetY + 12);

end;

procedure HeapStatus (StatusMessage: String);
begin

Str (MemAvail: 6, Temp);
OutTextLn(StatusMessage + Temp);

end;

{ - }
{ Arc's method implementations: }
{ - }
constructor Arc.Init(InitX, InitY : Integer;

InitRadius : Integer;
InitStartAngle, InitEndAngle : Integer);

begin
Circle.Init(InitX, InitY, InitRadius);
StartAngle := InitStartAngle;
EndAngle := InitEndAngle;

end;

procedure Arc.Show;
begin

Visible := True;
Graph.Arc(X, Y, StartAngle, EndAngle, Radius);

end;

procedure Arc.Hide;
var

TempColor : Word;
begin
50 Chapter 1 All about OOP

Methods
TempColor := Graph.GetColor;
Graph.SetColor(GetBkColor);
Visible := False;
Graph.Arc(X, Y, StartAngle, EndAngle, Radius);
SetColor(TempColor);

end;

{ List's method implementations: }
constructor List.Init;
begin

Nodes := nil;
end;

destructor List.Done;
var

N : NodePtr;
begin

while Nodes <> nil do
begin

N := Nodes;
Dispose(N^.Item, Done);
Nodes := N^.Next;
Dispose(N);

end;
end;

procedure List.Add(Item : PointPtr);
var

N : NodePtr;
begin

New(N);
N^.Item := Item;
N^.Next := Nodes;
Nodes := N;

end;

procedure List.Report;
var

Current : NodePtr;
begin

Current := Nodes;
while Current <> nil do
begin

Str(Current^.Item^.GetX : 3, Temp);
OutTextLn('X = ' + tTemp);
Str(Current^.Item^.GetY: 3, Temp);
OutTextLn('Y = ' + ITemp);
Current := Current^.Next;

end;
Chapter 1 All about OOP 51

All about OOP
end;

{ - }
{ Main program: }
{ - }
begin

{ Let the BGI determine what board you're using: }
InitGraph(GraphDriver, GraphNode, '');
if GraphResult <> GrOK then
begin

WriteLn('>>Halted on graphics error; ',
GraphErrorMsg(GraphDriver));

Halt(1);
end;
HeapStatus('Heap space before list is allocated: ');
{ Create a list }
AList.Init;
{ Now create and add several figures to it in one operation }
AList.Add(New(ArcPtr, Init(151, 82, 25, 200, 330)));
AList.Add(New(CirclePtr, Init(400, 100, 40)));
AList.Add(New(CirclePtr, Init(305, 136, 5)));
{ Traverse the list and display X,Y of the list's figures }
AList.Report;
HeapStatus('Heap space after list is allocated ');
{ Deallocate the whole list with one destructor call }
AList.Done;
HeapStatus('Heap space after list is cleaned up: ');
OutText('Press Enter to end program: ');
ReadLn;
CloseGraph;

end.

Where to now? As with any aspect of computer programming, you don’t get better at object-
oriented programming by reading about it; you get better at it by doing it.
Most people, on first exposure to object-oriented programming, are heard to
mutter “I don't get it” under their breath. The “Aha!” comes later that night
when, in the midst of putting their own objects in place, the whole concept
comes together in the sort of perfect moment we used to call an epiphany.
Like the face of woman emerging from a Rorschach inkblot, what was
obscure before at once becomes obvious, and from then on it’s easy.

The best thing to do for your first object-oriented project is to take the FIG-
URES.PAS unit shown on page 42 (you have it on disk) and extend it.
Points, circles, and arcs are by no means enough. Create objects for lines,
rectangles, and squares. When you’re feeling more ambitious, create a pie-
chart object using a linked list of individual pie-slice figures.
52 Chapter 1 All about OOP

Conclusion
One more subtle challenge is to implement objects with relative position. A
relative position is an offset from some base point, expressed as a positive or
negative difference. A point at relative coordinates -17,42 is 17 pixels to the
left of the base point, and 42 pixels down from that base point. Relative posi-
tions are necessary to effectively combine figures into single larger figures,
since multiple-figure combination figures cannot always be tied together at
each figure’s anchor point. Better to define an RX and RY field in addition to
anchor point X,Y, and have the final position of the object on the screen be
the sum of its anchor point and relative coordinates.

Once you’ve had your “Aha!,” start building object-oriented concepts into
your everyday programming chores. Take some existing utilities you use
every day and rethink them in object oriented terms. Take another look at
your hodgepodge of procedure libraries and try to see the objects in them -
then rewrite the procedures in object form. You'll find that libraries of
objects are much easier to reuse in future projects. Very little of your initial
investment in programming effort will ever be wasted. You will rarely have
to rewrite an object from scratch. If it will serve as is, use it. If it lacks some-
thing, extend it. But if it works well, there's no reason to throw away any of
what’s there.

Conclusion
Object-oriented programming is a direct response to the complexity of mod-
ern applications, complexity that has often made many programmers throw
up their hands in despair. Inheritance and encapsulation are extremely effec-
tive means for managing complexity. (It’s the difference between having ten
thousand insects classified in a taxonomy chart, and ten thousand insects all
buzzing around your ears.) Far more than structured programming, object-
orientation imposes a rational order on software structures that, like a taxon-
omy chart, imposes order without imposing limits.

Add to that the promise of the extensibility and reusability of existing code,
and the whole thing begins to sound almost too good to be true. Impossible,
you think?

Hey, this is Turbo Pascal. “Impossible” is undefined.
Chapter 1 All about OOP 53

All about OOP
54 Chapter 1 All about OOP

	Introduction
	About this manual
	Installation
	1. Insert the distribution disk labeled Installation Disk in Drive A.
	2. Type A: and press Enter.
	3. Type INSTALL and press Enter.

	Special Notes
	Online help
	1. Once you’ve brought up the help screen you want to copy from, press C. This activates the curs...
	2. After you’ve placed the cursor at the beginning of the text you want to copy, press B to begin...
	3. To end cut-and-paste and to place the text in your edit file, press Enter.
	4. The text is pasted into the editor and is marked as a block, which allows you to easily move t...

	How to contact Borland
	Note!

	CHAPTER 1 All about OOP
	Objects?
	Inheritance
	Objects: records that inherit
	Instances of object types
	An object’s fields
	Good practice and bad practice

	Methods
	Code and data together
	Defining methods
	Method scope and the Self parameter
	Object data fields and method formal parameters
	Objects exported by units
	Programming in the active voice
	Encapsulation
	Methods: no downside
	Extending objects
	Inheriting static methods
	Virtual methods and polymorphism
	Early binding vs. late binding
	Object type compatibility
	Polymorphic objects
	Virtual methods
	Range checking virtual-method calls
	Once virtual, always virtual
	An example of late binding
	Procedure or method?
	Object extensibility
	Static or virtual methods
	Dynamic objects
	Allocation and initialization with New
	Disposing dynamic objects
	Destructors
	An example of dynamic object allocation
	Disposing of a complex data structure on the heap
	Where to now?

	Conclusion

